
Managing Synchronizer MTBF

ALJ001 (V1.0) February 25, 2009

ABSTRACT • The typical article on metastability in synchronizers delivers volumes
about the MTBF equation but falls short when explaining practical ways to manage the
failure rate. This article reviews synchronizer MTBF and encourages the logic designer
implementing synchronizers to employ physical constraints to ensure the design mini-
mizes failure rate. It finishes with an example synchronizer implemented in VHDL w/
Xilinx constraints.

KEYWORDS • MTBF, metastability, FPGA, Xilinx, logic design, synchronizer, VHDL,
timing constraint, asynchronous, clock domain crossing
ASPEN
LOGIC
JOURNAL

ASPEN LOGIC INC. Aspen Logic Journal

ALJ001 (V1.0) February 25, 2009Managing Synchronizer MTBF
I sat on the fence for sometime trying to decide whether to write this
article. Many authors have tackled metastability - in the popular press,
via the web and of course in research quality journals. Yet, it seemed
like something was missing based on my experience reviewing code. An
explicit guide to managing metastability and the mean time between
failure (“MTBF”) of the synchronizer seemed appropriate.

I begin with a look at the standard expression of synchronizer MTBF and
what assumptions are made in its construction that apply to FPGA logic.

From there I move to how the synchronizer MTBF might be left to chance
in the capable but potentially misguided hands of your place and route
tool. Finally I offer two approaches to explicitly controlling the MTBF in
your synchronizer code when targeting FPGA devices from Xilinx.

Synchronizer MTBF
The meaning of synchronizer failure

A synchronizer is a pair of edge triggered flip-flops or level sensitive
latches which are intended to capture an asynchronous event edge tran-
sition into a receiving clock domain thus synchronizing it.

Due to the inescapable reality of device physics it is possible that the
arriving event edge may be so close to the receiving domain’s clock edge
that the feedback process driving the cross-coupled gates in the master
latch does not have the necessary energy to complete the transition.
The latch then comes to rest at a precariously stable (or metastable)
state halfway between the ‘0’ and ‘1’ voltage levels. The time to exit
this state is deterministic (as modeled by second order differential
equations) and is a function of how much energy is provided (which
relates directly to the amount of overlap between clock and data
edges.) The lack of determinism comes from the input process that sup-
plies the data edges and how frequently they will put the device into a
metastable position.1 If the latch output remains at that metastable
level longer then some criterion permits then a failure has occurred.

Metastability in level sensitive latch circuits

I will not repeat the excellent derivations [Mead], [Kinniment] of the
differential equations at the heart of the circuit model (and hence for
the MTBF equation derived from that model) for the cross-coupled
inverters at the heart of the latch model. But ultimately, even though
both offer different formulations they both result in mean time between
failure which use an exponential term that relates how much time it
takes to exit from the metastable level. Many other sources reference
similar equations that differ only in the meaning of the terms. From
[Kinniment] the equation is expressed as follows:

(1)

Where,
fd = data edge rate
fc = synchronizing domain clock rate
Tw = metastability window
τ = feedback loop time constant
t = time at which the synchronizing latch value is sampled

The designer needs to collect these values from some source (manufac-
turers perhaps or from experiments they design.)

The edge rate of the data being synchronized refers to the number of
rising and falling edges present in a given unit of time. Typically the
logic designer would simply plug in the source domain clock rate here. If
the data toggles at the source clock rate there is one edge per clock.

The synchronizer is connected to a clock with a rate given by fc.

[Kinniment] explains Tw and τ as follows:

“The value of Tw is determined by the input time constant θ and the
point at which the flip-flop exits from metastability Ve.”

“The value of τ is mainly determined by the feedback loop time
constants, and since both Tw and τ are determined by channel con-
ductances and gate capacitances, they are likely to be similar.”

The designer needs to obtain estimates Tw and τ either by contacting the
device manufacturer or obtaining the values experimentally. [AN219],
[Kinniment] and [Alfke] present experimental approaches to determin-
ing these values.

Resolution Time

The value of t represents the resolution time available for the synchro-
nizer flip-flop output to exit the metastable level. It is at least as great
as the clock to out propagation time of the latch. In [AN219] it is pre-
sented simply as the clock period of the synchronizer. That may have
been an adequate estimate for 1989 MSI/LSI technologies where routing
delays (between components) were negligible versus the clock period.
Routing dominates the propagation delay in FPGA technologies
employed in today’s designs. Consequently the logic designer must con-
sider the worst case slack in the timing path to the second flip-flop when
establishing the time available for resolution2. Worse yet, each place-
and-route (“PAR”) run could implement a different route between the
flip-flops of your synchronizer causing t to vary from run to run.

Typically the logic designer relies on static timing analysis with the
design constrained by a clock period constraint to guarantee that the
slack is positive for all the synchronous elements connected to the
receiving clock domain. Such an approach could leave the resolution
time at a value close to the nominal (non-metastable) clock to out time
of the flip-flop do to excessive routing delay since the PAR engine need
only meet the cycle constraint, not exceed it! Remember, once the
metastable result resolve to a ‘1’ or ‘0’ it must propagate across routing
(delay), meet the setup time of the flip-flop (delay) then get clocked
into the second flip-flop. Since the MTBF is an exponential function the
MTBF can go from eons to hours or seconds with a seemingly tiny change
in routing delay.

Figure 2 plots MTBF as a function of slack to graphically show how
increasing the available slack dramatically affects the MTBF of a syn-
chronizer operating at 300 MHz in a Virtex-II ProTM device characterized
in [Alfke].

The plot assumes Tperiod=3333 ps, Tsu=270 ps, Tcko=420 ps and a mini-
mum route of 310 ps. Zero slack (maximum routing) correlates to a

Figure 1 Two stage flip-flop synchronizer

1. This subtle distinction is lost in all of the papers save one that I
have reviewed. The assumption of a uniform distribution of input edges
within the receive clock period is a fundamental assumption underpin-
ning the construction of the “standard” MTBF presented for synchroniz-
ers.

Uniformly distributed
source of data edges
at average rate fd

Combinatorial + routing +
setup delays

receive clk
synchronizer

MTBF e
t
τ
--

fd fc TW⋅ ⋅
------------------------=

2. Some papers on metastability, notably [GROSSE] include an explicit
mention of the routing delay yet others do not.
Copyright © 2009 ASPEN LOGIC, INC. 2 http://www.aspenlogic.com/journal/alj001.html
All rights reserved. ASPENLOGIC® (V1.0) February 25, 2009

http://www.aspenlogic.com/journal/alj001.html

ASPEN LOGIC INC. Aspen Logic Journal

ALJ001 (V1.0) February 25, 2009Managing Synchronizer MTBF
route of 3333 ps - 1000 ps = 2333 ps of additional routing above and
beyond the initial 310 ps.

The the value of τ, which equals 36.8 ps, determines the slope of the
MTBF curve. That means an MTBF decrease of 1000 times for every
τ * ln(1000) = 254 ps decrease in slack!

I think you will agree that, if left unconstrained, the PAR tool could acci-
dently using that additional slack with dramatic consequences for the
expected MTBF.

To avoid this lack of rigor in controlling the MTBF, I recommend that the
logic designer minimize the routing delay in the synchronizer to drive
the slack to the greatest positive value possible in the selected device.
That means minimizing the routing delay between the two flip-flops
(assuming that neither the setup time nor synchronizer clock period can
be changed.)

Maximizing MTBF
Using Tool Constraints

The problem is the uncontrolled routing delay to the second synchro-
nizer flip flop. So what is the logic designer to do?

TYPICAL SYNCHRONIZER CODING. Figure 3 illustrates a typical synchronizer
coding in VHDL. Once instantiated your design will get two flip flops con-
nected to some asynchronous source of data. Based on my experience
reading the code of others this is all the typical designer ever does.
Probably due to suggestions by others that synchronizers just need “two
flip-flops in series”.

With the appropriate cycle period constraint on signal “clk” your PAR
tool will ensure that the two flops meet the cycle time constraint. As
indicated in the last section that is insufficient to “engineer” the MTBF
to a desired value.

SOLUTION USING A MAXDELAY CONSTRAINT. Examine Figure 4 illustrates a
delay constraint for maximizing the resolution time using a Xilinx
“MAXDELAY” constraint, placed directly in the RTL VHDL1. It demon-
strates a way for the designer to explicitly over constrain the path delay
so that the slack time and thus MTBF parameter t is maximized.

“MAXDELAY” sets the maximum routing delay that the circuit can toler-
ate. Perhaps more importantly, if for some reason the delay cannot be
met, the timing analyzer will report a timing path violation.

When the synchronizer is appropriately named and located in its own
hierarchical block a timing violation can alert the logic designer or test
personnel to the critical nature of that portion of the circuit.

It is important to make the value reasonable and as small as possible. My
experiments indicate that 400 ps is a good default. This results in maxi-
mum resolution time with a correspondingly high MTBF. Obviously the
value you select for each design should be carefully considered.

Alternatively, you could use a VHDL generic in the entity to support a
flexible means for establishing the maximum delay and place the syn-
chronizer into a shared component library for all to access.

OTHER CONSTRAINT METHODS. Other physical constraint methods exist
which the logic design could exploit to obtain a similar result. For exam-
ple the Xilinx “HBLKNM” constraint forces flip flops into the same CLB
which would typically result in very short routes. However, it can only be
applied to flip flop instances and in the end doesn’t completely guaran-
tee a fast route. It might give the placer additional, early guidance on
what it will have to do to satisfy the MAXDELAY constraint and that could
possibly speed up your PAR run. In a similar vain RLOC constraints might
also be used to form a relationally placed macro component.

Minimizing Events to Synchronize

[Mead] suggests limiting unnecessary synchronization events by gating
the input to the synchronizer with a lower frequency qualifier originat-
ing in the receiving clock domain. The cost of the qualifying AND gate is
trivial since the CLB/SLICE containing the synchronizer flip-flop will
have a LUT available for this.

Ultimately the increase in MTBF bang-for-the-buck is smaller then with
controlling t because only the fd is decreased which is outside the expo-

Figure 2 MTBF versus Slack

LIBRARY std_logic_1164;
USE work.std_logic_1164.all;

ENTITY sync(d, clk: IN std_logic; q: OUT std_logic);
ARCHITECTURE typical OF sync IS
 SIGNAL d1 : std_logic;
BEGIN
 PROCESS (clk)
 BEGIN
 IF rising_edge(clk) THEN
 d1 <= d;
 q <= d1;
 END IF;
 END PROCESS;
END ARCHITECTURE;

Figure 3 Typical Synchronizer Coding

2034

1525

1271

1017

763

508

254

1779

1E-6

1E-3

1E+0

1E+3

1E+6

1E+9

1E+12

1E+15

1E+18

1E+21

0 500 1000 1500 2000 2500

Available Slack (ps)

M
T
B
F
 (

S
e
c
o
n
d
s)

1. The constraint can also be placed in an external file but this discon-
nects the necessity of the constraint from the code that requires it. I
think it is best to have it in the code.

LIBRARY std_logic_1164;
USE work.std_logic_1164.all;

ENTITY sync(d, clk: IN std_logic; q: OUT std_logic);
ARCHITECTURE typical OF sync IS
 ATTRIBUTE maxdelay : string;
 SIGNAL d1 : std_logic;
 -- Maximize the synchronizer’s metastability
 -- resolution time by constraining the maximum
 -- routing delay to 400 ps thereby maximizing the
 -- MTBF.
 ATTRIBUTE maxdelay OF d1 : SIGNAL IS "400 ps";
BEGIN
 PROCESS (clk)
 BEGIN
 IF rising_edge(clk) THEN
 d1 <= d;
 q <= d1;
 END IF;
 END PROCESS;
END ARCHITECTURE;

Figure 4 Synchronizer Coding w/ MAXDELAY attribute
Copyright © 2009 ASPEN LOGIC, INC. 3 http://www.aspenlogic.com/journal/alj001.html
All rights reserved. ASPENLOGIC® (V1.0) February 25, 2009

http://www.aspenlogic.com/journal/alj001.html

ASPEN LOGIC INC. Aspen Logic Journal

ALJ001 (V1.0) February 25, 2009Managing Synchronizer MTBF
nential term. I mention this approach only because it may prove useful if
fc is very large (making it harder to get sufficient slack to meet an MTBF
goal) and the qualifier occurs infrequently.

Conclusion
The probability of a synchronizer failing, given enough operating time, is
100%. The logic designer should not fail, however, to explicitly constrain
the timing path within the synchronizer to maximize the MTBF at essen-
tially zero cost. That is done by maximizing the synchronizer flip-flop
slack time. A MAXDELAY constraint is ideal for that purpose.

In addition, the designer can opt to minimize synchronizing events by
gating the asynchronous input with a low frequency qualifier to increase
MTBF.

Ultimately, it would be desirable for vendors to supply an MTBF con-
straint which computes and reports the estimated MTBF for the synchro-
nizer based on internal data for the transistors in their flip flops (given
the appropriate design information.) Possibly even doing MTBF driven
PAR as a component of a standard timing driven PAR.

References
[AN219] “A metastability primer”, Philips Semiconductor Application
note 219, 1989-Nov-15.

[MEAD] Introduction to VLSI systems. Carver A. Mead. Copyright (C) 1980
by Addison-Wesley Publishing Company, Inc.

[KINNIMENT] Synchronization and arbitration in digital systems. David J.
Kinniment. Copyright (C) 2007 John Wiley & Sons LTD.

[ALFKE] “Metastability Recovery in Virtex-II Pro FPGAs”. Xilinx applica-
tion note XAPP094, (V3.0) Feb 10, 2005 by Peter Alfke. http://www.xil-
inx.com/support/documentation/application_notes/xapp094.pdf

[GROSSE] "Keep metastability from killing your digital design”, Debora
Grosse, EDN magazine, 2004-06-23.

Feedback
To provide feedback (of any type) to the author of this article please
send an E-mail to Journal@AspenLogic.com. With respect to this article,
all feedback emails are considered as being in the public domain prior to
disclosure to Aspen Logic, Inc. so do not send any confidential or propri-
etary information to us.

About the Author

Notes

Figure 5 Synchronizer w/ data filter

receive clk

Tim Davis is the night time janitor at Aspen Logic
where he practices “janitorial engineering” on
designs he finds lying around the office. Drop him a
line if you need something cleaned up.
Copyright © 2009 ASPEN LOGIC, INC. 4 http://www.aspenlogic.com/journal/alj001.html
All rights reserved. ASPENLOGIC® (V1.0) February 25, 2009

http://www.aspenlogic.com/journal/alj001.html
http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf

	Managing Synchronizer MTBF
	Synchronizer MTBF
	The meaning of synchronizer failure
	Metastability in level sensitive latch circuits
	Resolution Time

	Maximizing MTBF
	Using Tool Constraints
	Typical synchronizer coding
	Solution using a MAXDELAY constraint
	Other Constraint Methods

	Minimizing Events to Synchronize

	Conclusion
	References
	Feedback
	About the Author
	Notes

